Substrate recognition and catalysis by flap endonucleases and related enzymes.

نویسندگان

  • Christopher G Tomlinson
  • John M Atack
  • Brian Chapados
  • John A Tainer
  • Jane A Grasby
چکیده

FENs (flap endonucleases) and related FEN-like enzymes [EXO-1 (exonuclease-1), GEN-1 (gap endonuclease 1) and XPG (xeroderma pigmentosum complementation group G)] are a family of bivalent-metal-ion-dependent nucleases that catalyse structure-specific hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair and recombination. In the case of FENs, the ability to catalyse reactions on a variety of substrates has been rationalized as a result of combined functional and structural studies. Analyses of FENs also exemplify controversies regarding the two-metal-ion mechanism. However, kinetic studies of T5FEN (bacteriophage T5 FEN) reveal that a two-metal-ion-like mechanism for chemical catalysis is plausible. Consideration of the metallobiochemistry and the positioning of substrate in metal-free structures has led to the proposal that the duplex termini of substrates are unpaired in the catalytically active form and that FENs and related enzymes may recognize breathing duplex termini within more complex structures. An outstanding issue in FEN catalysis is the role played by the intermediate (I) domain arch or clamp. It has been proposed that FENs thread the 5'-portion of their substrates through this arch, which is wide enough to accommodate single-stranded, but not double-stranded, DNA. However, FENs exhibit gap endonuclease activity acting upon substrates that have a region of 5'-duplex. Moreover, the action of other FEN family members such as GEN-1, proposed to target Holliday junctions without termini, appears incompatible with a threading mechanism. An alterative is that the I domain is used as a clamp. A future challenge is to clarify the role of this domain in FENs and related enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The structure of Escherichia coli ExoIX—implications for DNA binding and catalysis in flap endonucleases

Escherichia coli Exonuclease IX (ExoIX), encoded by the xni gene, was the first identified member of a novel subfamily of ubiquitous flap endonucleases (FENs), which possess only one of the two catalytic metal-binding sites characteristic of other FENs. We have solved the first structure of one of these enzymes, that of ExoIX itself, at high resolution in DNA-bound and DNA-free forms. In the en...

متن کامل

Amino acid residues in the GIY-YIG endonuclease II of phage T4 affecting sequence recognition and binding as well as catalysis.

Phage T4 endonuclease II (EndoII), a GIY-YIG endonuclease lacking a carboxy-terminal DNA-binding domain, was subjected to site-directed mutagenesis to investigate roles of individual amino acids in substrate recognition, binding, and catalysis. The structure of EndoII was modeled on that of UvrC. We found catalytic roles for residues in the putative catalytic surface (G49, R57, E118, and N130) ...

متن کامل

Flap endonucleases pass 5′-flaps through a flexible arch using a disorder-thread-order mechanism to confer specificity for free 5′-ends

Flap endonucleases (FENs), essential for DNA replication and repair, recognize and remove RNA or DNA 5'-flaps. Related to FEN specificity for substrates with free 5'-ends, but controversial, is the role of the helical arch observed in varying conformations in substrate-free FEN structures. Conflicting models suggest either 5'-flaps thread through the arch, which when structured can only accommo...

متن کامل

Substrate-assisted catalysis: molecular basis and biological significance.

Substrate-assisted catalysis (SAC) is the process by which a functional group in a substrate contributes to catalysis by an enzyme. SAC has been demonstrated for representatives of three major enzyme classes: serine proteases, GTPases, and type II restriction endonucleases, as well as lysozyme and hexose-1-phosphate uridylyltransferase. Moreover, structure-based predictions of SAC have been mad...

متن کامل

The structural basis of damaged DNA recognition and endonucleolytic cleavage for very short patch repair endonuclease.

Endonucleases in DNA repair must be able to recognize damaged DNA as well as cleave the phosphodiester backbone. These functional prerequisites are manifested in very short patch repair (Vsr) endonuclease through a common endonuclease topology that has been tailored for recognition of TG mismatches. Structural and biochemical comparison with type II restriction enzymes illustrates how Vsr resem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 38 2  شماره 

صفحات  -

تاریخ انتشار 2010